

Development and Optimization of Multi-Functional SCR-DPF Aftertreatment for Heavy-Duty NO_x and Soot Emission Reduction

Kenneth G. Rappé

Co-Principal Investigator
Pacific Northwest National Laboratory

PACCAR Technical Center

Randal Goffe (Co-PI), Cynthia Webb

Pacific Northwest National Laboratory

Feng Gao, Yong Wang

PNNL is operated by Battelle for the U.S. Department of Energy

PNNL Fundamental and CRADA Projects Address the 150°C Challenge, PGM Reduction, Durability, and Cost - Exemplified by 5 AMR Presentations

PNNL Fundamental and CRADA Projects Address the 150°C Challenge, PGM Reduction, Durability, and Cost - Exemplified by 5 AMR Presentations

Project Overview

Timeline

- 4-yr CRADA
 - Start date July 2016
 - End date June 2020
- 95% complete

Budget

- Contract value \$2.7M
 - \$1.35M DOE share
 - \$1.35M PACCAR share
- Funding received
 - \$1.1M through FY18
 - FY20 \$100K

Barriers

- B. Lack of cost-effective emission control for meeting EPA standards for NOx & PM emissions
- E. Durability of the emission control system: 435,000 miles (HD)
- G. Cost of emission control devices... for heavy duty engines in particular

Partners

CRADA partner

Relevance Multi-Functional Aftertreatment: SCR-on-DPF for HD

- Highly promising strategy of aftertreatment integration
 - Reduced total thermal mass
 - √ Faster warm-up
 - √ Reduced cold-start emissions
 - Improved performance & increased flexibility
 - ✓ SCR more closely coupled to engine
 - ✓ Increased total SCR volume

- √ Soot trapped upstream
- ✓ Molecular diffusion to washcoat

Relevance

Fast SCR depletes NO₂ in inlet channel leaving less for passive soot oxidation

Approach The role of the SCO phase

Goal: Maximize passive soot oxidation activity with SCR on filter

Approach: Minimize the impact of fast-SCR catalysis on inlet NO₂ *This is a catalysis challenge*.

- Use a selective catalytic oxidation (SCO) phase with the SCR catalyst to promote oxidation of NO to NO₂
- Increase NO₂ in the filter inlet channel by *reducing NO₂ forward diffusive effects*
- Mn-based SCO phase being pursued

Approach Schedule and Milestones

Date	Milestone and Go/No-Go Decisions	Status
May 2019	Milestone: SCRF single wall model complete	Complete
July 2019	Go/No-Go decision: SCO-SCR binary catalyst demonstrated that exhibits improved SCR/PSO performance and durability	Complete (PNNL + PACCAR)
Feb 2020	SMART milestone: SCRF binary catalyst development complete	Complete
April 2020	Milestone: SCRF device-level model complete	On-going

Accomplishments Focus for this year's efforts

- Core sampling testing
 - SCR = CuCHA
 - SCO = 10%Mn/ZrO₂
 - Most work is comparing
 - ✓ 100% SCR
 - √ 30% SCO 70% SCR physically mixed (intimate)
- Axisuite modeling in progress
- SCO phase study and path forward

SCO phase shown to significantly shift NO_2/NO_x balance with equivalent or superior SCR performance

- Core sample testing Std SCR conditions
- ~70 g/L active phase on SiC support

- Low temperature SCR activity improvement
- No adverse impact of NH₃ oxidation at elevated temperature
- Significantly increased
 NO₂ in catalyst effluent
 - 290°C to 360°C

 $NO_2 > NO$ in effluent

Std-SCR Conditions:

SCO-SCR synergistic interaction observed from superior

low-temperature SCR performance

Low-temperature SCR performance improvement from binary catalyst

NO oxidation + SCO-phase SCR contribution

SCO phase exhibits durable impact on NO₂/NO_x balance

across all expected gas compositions

SCO contribution has durable impact across broad NO/NO₂ make-up

Analogous or improved N₂O effluent profile!

Soot oxidation testing procedure

Soot loading & soot oxidation are decoupled and performed iteratively

<u>Sequence</u>

- Load to ~4 g/L soot loading on real soot generator unit
- Remove from soot generator apparatus, install into synthetic gas bench
- Pre-heat and stabilize inlet gas profile
- Temperature programmed oxidation @ 5°C/min 150°C (or 180°C) to 580°C

Metrics

- Pressure drop
- CO, CO₂ production
 - Soot mass is not reliable on mini-cores

SCO phase positively impacts passive soot oxidation activity and CO/CO₂ production profile

- SCO shifts pressure drop profile to ~30°C lower
- Effluent shifted to CO₂ majority (versus CO production) **

Std-SCR Conditions

• SCO benefits std-SCR through >350°C

With greater NO₂ in feed, soot oxidation CO/CO₂ product profile becomes main benefit of SCO phase

- $NO_2/NO_x = 0.35$
- ΔP profile to ~30°C lower temperature
- Effluent heavily shifted to CO₂ majority**

- $NO_2/NO_x = 0.5$
- Effluent <u>heavily</u> shifted to CO₂ majority**

^{**}Important because filter will not have PGM-based CO oxidation

Axisuite modeling shows the pronounced impact that wall velocity has on diffusive impacts

Great SCR catalyst <u>increases</u> [NO₂] in inlet channel

- Increases wall flow velocity
- Decreases diffusion contribution

- 250°C
- Baseline: 35K
 GHSV, 4 g/L soot,
 70 g/L active w/c
 distribution = 1

Simulating bench-scale testing of catalyst cores

Mn-dimer active center, directs pathways for improved

thermal and chemical durability

- Shift to non-isolated Mn species at 5 wt%
- Optimum NO oxidation at 10 wt% Mn,
- Suggests Mn-dimer active center

10 wt% MnO₂ optimum loading on ZrO₂ for catalyst development

Responses to Reviewer Comments

Comment

Thermal/chemical aging needs to be addressed; GHG emissions (N2O, CH₄) should be addressed as well

Unclear if "newer" NO₂ formed *in-situ* is not consumed by NH₃.

Modest outcome compared to current state-of-the-art which is in industry for >10 years

Response

Reviewer is correct! Thermal aging has been an area of focus for the work. Last year, showed unique thermally-induced IE aging mechanism (Mn displacing Cu) and relevance to heavyduty diesel application.

N₂O emission profile shown this year.

This year sulfur is an area of focus; work is proceeding.

We can measure it. We are able to track the fate of NH₃ to routes other than SCR, e.g., oxidation by CuO clusters. We call this 'parasitic' NH₃ oxidation.

Yes, SCR-on-DPF is available technology for *light-duty*, enabled by durable CuCHA and high-porosity filter substrates. Not the case for *heavy-duty*. Current technology prohibitively impacts passive soot oxidation and increases aftertreatment fuel penalty.

Collaboration and Coordination

DPF Substrate Suppliers

- Cordierite
- SiC

Pacific Northwest

NATIONAL LABORATORY

- Fundamental catalysis discovery
- Active site characterization& optimization
- Performance & durability
- Modeling

PACCAR Inc

- SCO phase discovery
- SCRF washcoat development
- SCR phase development
- DPF optimization

SCR Catalyst
Development
- Cu/SSZ-13

Catalyst Suppliers

Prototype Canners

- Routine discussion of activities & status
 - Quarterly technical progress review

Remaining Challenges

- Modeling Accurately capturing all kinetic pathways of SCO-phase contribution.
 - NO oxidation, STD SCR, FAST SCR, NH3 oxidation
 - Synergistic effect: how do we capture this?

• Chemical poisoning $-MnO_X/ZrO_2$ solid solution, pursue pathways to address prohibitive interaction if present.

Path Forward Sulfur durability an area of focus for balance of program

Evidence suggests
low-temperature
reducibility of Mn
may be key to
sulfur resistant
SCO phase
through L-H
reaction
pathway

Proposed Future Research

- Model development with full SCO kinetics
- Road-mapping studies with model
- Sulfur durability SCO-phase modifications for improved reducibility
- Desulfation requirements as f(reducibility)

- 10%Mn/ZrO₂ SCO phase shown to significantly shift NO₂/NO_x balance in the device with equivalent or superior SCR performance.
 - Durable impact on NO₂/NO_x balance across all expected gas compositions
- SCO-SCR synergistic interaction observed from superior low-temperature
 SCR performance not accounted for by [NO oxidation + SCO-phase SCR]
- SCO phase positively impacts passive soot oxidation activity and CO/CO₂ production profile
 - With greater NO2 in feed, CO/CO₂ product profile becomes main benefit of SCO phase
- Axisuite modeling shows the pronounced impact that wall velocity has on diffusive impacts.
- Mn-dimer active center identified, directs pathways for improved thermal and chemical durability

Thank you

Back-up Slides

Mn-based SCO showing greatest opportunity for synergistic low-temperature SCR impact

Fast SCR

- 10% metal oxide phases co-impregnated onto H-form SSZ-13.
- H-form SSZ-13 (i.e., without Cu) used to highlight NO₂—driven reaction pathways facilitated by the SCO phase.
- Data highlights NO₂ SCR reaction pathways facilitated by SCO phase.

SCO phase shown to have bi-functionality demonstrating both SCR and oxidation regimes

SCO phase exhibits low-temperature SCR while promoting higher temperature oxidation function

Axisuite modeling structure built to match bench reactor data

Axisuite modeling has utility for relating soot oxidation activity and SCR performance

<insert comment>

Axisuite modeling has utility for tracking soot oxidation via soot mass and pressure drop

<insert comment>